Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3639, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684745

RESUMO

Avalanche or carrier-multiplication effect, based on impact ionization processes in semiconductors, has a great potential for enhancing the performance of photodetector and solar cells. However, in practical applications, it suffers from high threshold energy, reducing the advantages of carrier multiplication. Here, we report on a low-threshold avalanche effect in a stepwise WSe2 structure, in which the combination of weak electron-phonon scattering and high electric fields leads to a low-loss carrier acceleration and multiplication. Owing to this effect, the room-temperature threshold energy approaches the fundamental limit, Ethre ≈ Eg, where Eg is the bandgap of the semiconductor. Our findings offer an alternative perspective on the design and fabrication of future avalanche and hot-carrier photovoltaic devices.

2.
Biomolecules ; 13(10)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892232

RESUMO

Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.


Assuntos
Miopatias Congênitas Estruturais , Doenças Neurodegenerativas , Humanos , Fosfatidilinositóis/metabolismo , Inositol/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Carcinogênese/genética , Patrimônio Genético , Redes e Vias Metabólicas , Doenças Neurodegenerativas/genética
3.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688032

RESUMO

At the current stage of long-wavelength infrared (LWIR) detector technology development, the only commercially available detectors that operate at room temperature are thermal detectors. However, the efficiency of thermal detectors is modest: they exhibit a slow response time and are not very useful for multispectral detection. On the other hand, in order to reach better performance (higher detectivity, better response speed, and multispectral response), infrared (IR) photon detectors are used, requiring cryogenic cooling. This is a major obstacle to the wider use of IR technology. For this reason, significant efforts have been taken to increase the operating temperature, such as size, weight and power consumption (SWaP) reductions, resulting in lower IR system costs. Currently, efforts are aimed at developing photon-based infrared detectors, with performance being limited by background radiation noise. These requirements are formalized in the Law 19 standard for P-i-N HgCdTe photodiodes. In addition to typical semiconductor materials such as HgCdTe and type-II AIIIBV superlattices, new generations of materials (two-dimensional (2D) materials and colloidal quantum dots (CQDs)) distinguished by the physical properties required for infrared detection are being considered for future high-operating-temperature (HOT) IR devices. Based on the dark current density, responsivity and detectivity considerations, an attempt is made to determine the development of a next-gen IR photodetector in the near future.

4.
Light Sci Appl ; 12(1): 212, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652900

RESUMO

Avalanche photodiodes (APDs) have drawn huge interest in recent years and have been extensively used in a range of fields including the most important one-optical communication systems due to their time responses and high sensitivities. This article shows the evolution and the recent development of AIIIBV, AIIBVI, and potential alternatives to formerly mentioned-"third wave" superlattices (SL) and two-dimensional (2D) materials infrared (IR) APDs. In the beginning, the APDs fundamental operating principle is demonstrated together with progress in architecture. It is shown that the APDs evolution has moved the device's performance towards higher bandwidths, lower noise, and higher gain-bandwidth products. The material properties to reach both high gain and low excess noise for devices operating in different wavelength ranges were also considered showing the future progress and the research direction. More attention was paid to advances in AIIIBV APDs, such as AlInAsSb, which may be used in future optical communications, type-II superlattice (T2SLs, "Ga-based" and "Ga-free"), and 2D materials-based IR APDs. The latter-atomically thin 2D materials exhibit huge potential in APDs and could be considered as an alternative material to the well-known, sophisticated, and developed AIIIBV APD technologies to include single-photon detection mode. That is related to the fact that conventional bulk materials APDs' performance is restricted by reasonably high dark currents. One approach to resolve that problem seems to be implementing low-dimensional materials and structures as the APDs' active regions. The Schottky barrier and atomic level thicknesses lead to the 2D APD dark current significant suppression. What is more, APDs can operate within visible (VIS), near-infrared (NIR)/mid-wavelength infrared range (MWIR), with a responsivity ~80 A/W, external quantum efficiency ~24.8%, gain ~105 for MWIR [wavelength, λ = 4 µm, temperature, T = 10-180 K, Black Phosphorous (BP)/InSe APD]. It is believed that the 2D APD could prove themselves to be an alternative providing a viable method for device fabrication with simultaneous high-performance-sensitivity and low excess noise.

5.
Nutrients ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37432155

RESUMO

One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.


Assuntos
Doença de Alzheimer , Ciclitóis , Doença de Huntington , Humanos , Doença de Alzheimer/tratamento farmacológico , Células Eucarióticas , Osmorregulação
6.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365941

RESUMO

A3B5 materials used for the superlattice (SL) fabrication have properties that enable the design of devices optimized for infrared (IR) detection. These devices are used in the military, industry, medicine and in other areas of science and technology. The paper presents the theoretical assessment and analysis of the InAs/InAs1-xSbx type-II superlattice (T2SL) (grown on GaSb buffer layer) strain impact on the bandgap energy and on the effective masses of electrons and holes at 150 K. The theoretical research was carried out with the use of the commercial program SimuApsys (Crosslight). The k·p method was adopted in T2SL modeling. Luttinger coefficients (γ1, γ2 and γ3) were assessed assuming the Kane coefficient F = 0. The bandgap energy of ternary materials (InAsxSb1-x) was determined assuming that the bowing parameter (bg) for the above-mentioned temperature is bg = 750 meV. The cutoff wavelength values were estimated based on the theoretically determined absorption coefficients (from approximation the quadratic absorption coefficient). The bandgap energy was calculated according to the following formula: Eg = 1.24/λcutoff. The theoretical simulations allowed us to conclude that the strain in T2SL causes the Eg shift, which also has an impact on the effective masses me and mh, playing an important role for the device's optical and electrical performance. The T2SLs-simulated results at 150 K are comparable to those measured experimentally.


Assuntos
Arsenicais , Índio , Elétrons , Temperatura
7.
Light Sci Appl ; 11(1): 27, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105855
8.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161667

RESUMO

The trend related to reach the high operating temperature condition (HOT, temperature, T > 190 K) achieved by thermoelectric (TE) coolers has been observed in infrared (IR) technology recently. That is directly related to the attempts to reduce the IR detector size, weight, and power dissipation (SWaP) conditions. The room temperature avalanche photodiodes technology is well developed in short IR range (SWIR) while devices operating in mid-wavelength (MWIR) and long-wavelength (LWIR) require cooling to suppress dark current due to the low energy bandgap. The paper presents research on the potential application of the HgCdTe (100) oriented and HgCdTe (111)B heterostructures grown by metal-organic chemical vapor deposition (MOCVD) on GaAs substrates for the design of avalanche photodiodes (APDs) operating in the IR range up to 8 µm and under 2-stage TE cooling (T = 230 K). While HgCdTe band structure with molar composition xCd < 0.5 provides a very favorable hole-to-electron ionization coefficient ratio under avalanche conditions, resulting in increased gain without generating excess noise, the low level of background doping concentration and a low number of defects in the active layer is also required. HgCdTe (100) oriented layers exhibit better crystalline quality than HgCdTe (111)B grown on GaAs substrates, low dislocation density, and reduction of residual defects which contribute to a background doping within the range ~1014 cm-3. The fitting to the experimentally measured dark currents (at T = 230 K) of the N+-ν-p-P+ photodiodes commonly used as an APDs structure allowed to determine the material parameters. Experimentally extracted the mid-bandgap trap concentrations at the level of 2.5 × 1014 cm-3 and 1 × 1015 cm-3 for HgCdTe (100) and HgCdTe (111)B photodiode are reported respectively. HgCdTe (100) is better to provide high resistance, and consequently sufficient strength and uniform electric field distribution, as well as to avoid the tunneling current contribution at higher bias, which is a key issue in the proper operation of avalanche photodiodes. It was presented that HgCdTe (100) based N+-ν-p-P+ gain, M > 100 could be reached for reverse voltage > 5 V and excess noise factor F(M) assumes: 2.25 (active layer, xCd = 0.22, k = 0.04, M = 10) for λcut-off = 8 µm and T = 230 K. In addition the 4-TE cooled, 8 µm APDs performance was compared to the state-of-the-art for SWIR and MWIR APDs based mainly on III-V and HgCdTe materials (T = 77-300 K).

9.
Sensors (Basel) ; 20(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317004

RESUMO

In 1989, one author of this paper (A.R.) published the very first review paper on InAsSb infrared detectors. During the last thirty years, many scientific breakthroughs and technological advances for InAsSb-based photodetectors have been made. Progress in advanced epitaxial methods contributed considerably to the InAsSb improvement. Current efforts are directed towards the photodetector's cut-off wavelength extension beyond lattice-available and lattice-strained binary substrates. It is suspected that further improvement of metamorphic buffers for epitaxial layers will lead to lower-cost InAsSb-based focal plane arrays on large-area alternative substrates like GaAs and silicon. Most photodetector reports in the last decade are devoted to the heterostructure and barrier architectures operating in high operating temperature conditions. In the paper, at first InAsSb growth methods are briefly described. Next, the fundamental material properties are reviewed, stressing electrical and optical aspects limiting the photodetector performance. The last part of the paper highlights new ideas in design of InAsSb-based bulk and superlattice infrared detectors and focal plane arrays. Their performance is compared with the state-of-the-art infrared detector technologies.

10.
Appl Opt ; 59(17): E42-E47, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543512

RESUMO

The paper presents electrical and optical properties of interband cascade infrared photodetectors with InAs/GaSb type-II superlattice absorbers. We compare the detection parameters of detectors grown on the native GaSb substrate and lattice-mismatched GaAs substrate and seek solutions to enhance device performance, specifically with using an optical immersion. The detectors grown on GaAs have better detection parameters at room temperature, but, at lower temperatures, the misfit dislocations become more important, and detectors grown on GaSb become better.

11.
ACS Med Chem Lett ; 10(12): 1674-1679, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31857845

RESUMO

Targeted antimitotic agents are a promising class of anticancer therapies. Herein, we describe the development of a potent and selective antimitotic Eg5 inhibitor based antibody-drug conjugate (ADC). Preliminary studies were performed using proprietary Eg5 inhibitors which were conjugated onto a HER2-targeting antibody using maleimido caproyl valine-citrulline para-amino benzocarbamate, or MC-VC-PABC cleavable linker. However, the resulting ADCs lacked antigen-specificity in vivo, probably from premature release of the payload. Second-generation ADCs were then developed, using noncleavable linkers, and the resulting conjugates (ADC-4 and ADC-10) led to in vivo efficacy in an HER-2 expressing (SK-OV-3ip) mouse xenograft model while ADC-11 led to in vivo efficacy in an anti-c-KIT (NCI-H526) mouse xenograft model in a target-dependent manner.

12.
Small ; 15(46): e1904396, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617328

RESUMO

Room-temperature operating means a profound reduction of volume, power consumption, and cost for infrared (IR) photodetectors, which promise a wide range of applications in both military and civilian areas, including individual soldier equipment, automatic driving, etc. Inspired by this fact, since the beginning of 1990s, great efforts have been made in the development of uncooled thermal detectors. During the last two decades, similar efforts have been devoted using IR photon detectors, especially based on photovoltaic effects. Herein, the proven technologies, which have been commercialized with a large format, like InGaAs/InP pin diodes, InAsSb barrier detectors, and high-operating-temperature HgCdTe devices, are reviewed. The newly developed technology is emphasized, which has shown unique superiority in detecting mid-wavelength and long-wavelength IR signals, such as quantum cascade photodetectors. Finally, brand-new concept devices based on 2D materials are introduced, which are demonstrated to provide additional degrees of freedom in designing and fabricating room-temperature IR devices, for example, the construction of multi-heterojunctions without introducing lattice strain, the convenient integration of optical waveguides and electronic gratings. All information provided here aims to supply a full view of the progress and challenges of room-temperature IR detectors.

13.
Sensors (Basel) ; 19(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013651

RESUMO

The InAs/InAsSb type-II superlattices (T2SLs) grown on a GaSb buffer layer and GaAs substrates were theoretically investigated. Due to the stability at high operating temperatures, T2SLs could be used for detectors operating in the longwave infrared (LWIR) range for different sensors to include, e.g., CH4 and C2H6 detection, which is very relevant for health condition monitoring. The theoretical calculations were carried out by the 8 × 8 k·p method. The estimated electrons and heavy holes probability distribution in a InAs/InAsSb superlattice (SL) shows that the wave function overlap increases while the thickness of the SL period decreases. The change in the effective masses for electrons and holes versus the SL period thickness for the kz-direction of the Brillouin zone is shown. The structures with a period lower than 15 nm are more optimal for the construction of LWIR detectors based on InAs/InAsSb SLs. The experimental results of InAs/InAsSb T2SLs energy bandgap were found to be comparable with the theoretical one. The proper fitting of theoretically calculated and experimentally measured spectral response characteristics in terms of a strain-balanced and unbalanced structures is shown.

14.
ACS Med Chem Lett ; 9(8): 838-842, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30128077

RESUMO

Antibody-drug conjugates (ADCs) are a novel modality that allows targeted delivery of potent therapeutic agents to the desired site. Herein we report our discovery of NAMPT inhibitors as a novel nonantimitotic payload for ADCs. The resulting anti-c-Kit conjugates (ADC-3 and ADC-4) demonstrated in vivo efficacy in the c-Kit positive gastrointestinal stromal tumor GIST-T1 xenograft model in a target-dependent manner.

15.
Appl Opt ; 57(18): D11-D19, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30117933

RESUMO

Recently, an enhanced computer program was applied to explain in detail the influence of different recombination mechanisms (Auger, radiative, and Shockley-Read-Hall) on the performance of high-operation-temperature, long-wavelength, infrared p-i-n HgCdTe heterojunction photodiodes. It is shown that the photon recycling effect drastically limits the influence of radiative recombination on the performance of small pixel HgCdTe photodiodes. The computer program is based on a solution of the carrier transport equations, as well as the photon transport equations for semiconductor heterostructures. Both the distribution of thermal carrier generation and recombination rates, and spatial photon density distribution in photodiode structures have been obtained. In comparison with two previously published papers in the Journal of Electronics Materials [J. Electron. Mater.45, 4587 (2016)JECMA50361-523510.1007/s11664-016-4566-6 and J. Electron. Mater.46, 6295 (2017)JECMA50361-523510.1007/s11664-017-5736-x], our paper provides an additional insight on the ultimate performance of long-wavelength infrared, high-operation-temperature HgCdTe arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to system optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA